APPENDIX G2 PRELIMINARY WATER QUALITY MANAGEMENT PLAN

Preliminary Water Quality Management Plan (PWQMP)

For compliance with Santa Ana Regional Water Quality Control Board

Order Number R8-2010-0036 (NPDES Permit No. CAS618036)

for

Project Name:	Euclid Mixed Use Specific Plan
Ontario Project #:	TBD
Project Description:	Industrial Building Development
Applicant Name:	Euclid Land Investments, LLC C/O RCCD Inc., Attn: Jason Lee
Applicant Address:	8101 E. Kaiser Blvd, Suite 140 Anaheim Hills, CA 92808
Project Address:	East side of Euclid Avenue between
Size of Development: _	60 ACRES

Submittal Date: <u>March 16, 2023</u> Revised: ___

Preliminary Water Quality Management Plan (PWQMP)

1. Introduction

The Preliminary Water Quality Management Plan (PWQMP) is a planning tool to improve integration of required water quality elements, stormwater management, water conservation, rainwater harvesting and re-use, and flood management in land use planning and the City's development process. The Preliminary WQMP will assist project applicants and planners in properly designing and laying out project sites so that water quality may be incorporated in the most effective manner and at the lowest cost for the developer.

The San Bernardino County Municipal Separate Storm Sewer System Permit (MS4 Permit) requires project-specific Water Quality Management plans (WQMP) to be prepared for all priority new development and significant redevelopment projects listed in Section 2 of this document. The MS4 Permit stipulates that the City of Ontario require priority project applicants to submit a Preliminary project-specific WQMP, as early as possible, during the environmental review or planning phase of a development project and that the Preliminary WQMP be approved prior to the issuance of land use entitlement.

2. Priority Projects (requiring a Preliminary WQMP)

Land Use entitlement shall not be issued for any of the listed projects, below, until a Preliminary WQMP has been approved by the City's Engineering Department. For construction projects not going through entitlement, a Preliminary and Final project-specific WQMP shall be approved, prior to the issuance of construction permits:

Check the appropriate project category below, for this project:

Check below	Project Categories
	1. All significant re-development projects. Significant re-development is defined as the addition or replacement of 5,000 or more square feet of impervious surface on an already developed site subject to discretionary approval of the Permittee. Redevelopment does not include routine maintenance activities that are conducted to maintain original line and grade, hydraulic capacity, original purpose of the facility, or emergency redevelopment activity required to protect public health and safety. Where redevelopment results in an increase of less than fifty percent of the impervious surfaces of a previously existing developed site, and the existing development was not subject to WQMP requirements, the numeric sizing criteria discussed below applies only to the addition or replacement, and not to the entire developed site. Where redevelopment results in an increase of the impervious surfaces of a previously to the impervious surface below applies only to the addition or replacement, and not to the entire developed site. Where redevelopment results in an increase of fifty percent or more of the impervious surfaces of a previously existing development results in an increase of entire developed site. Where redevelopment results in an increase of fifty percent or more of the impervious surfaces of a previously existing development results in an increase of impervious surfaces of a previously existing development (new and existing).

Check below		Project Categories
x	2.	New development projects that create 10,000 square feet or more of impervious surface (collectively over the entire project site) including commercial, industrial, residential housing subdivisions (i.e., detached single family home subdivisions, multi-family attached subdivisions or townhomes, condominiums, apartments, etc.), mixed-use, and public projects. This category includes development projects on public and private land, which fall under the planning and building authority of the permitting agency.
	3.	Automotive repair shops (with SIC codes 5013, 5014, 5541, 7532- 7534, 7536-7539).
	4.	Restaurants and Food Service Establishments where the land area of development is 5,000 square feet or more.
	5.	Developments of 2,500 square feet of impervious surface or more adjacent to (within 200 feet) or discharging directly into environmentally sensitive areas (ESA's) such as areas designated in the Ocean Plan as areas of special biological significance or waterbodies listed on the CWA Section 303(d) list of impaired waters.
x	6.	Parking lots of 5,000 square feet or more exposed to storm water. Parking lot is defined as land area or facility for the temporary storage of motor vehicles.
	7.	Retail Gasoline Outlets (RGOs) that are either 5,000 sq ft or more, or have a projected average daily traffic of 100 or more vehicles per day.
	8.	*This project is not covered under any of the categories listed above.

* If the development is not covered under any of the project categories listed in Section 2, the project is not required to design and install Site Design/LID BMPs or Treatment Control BMPs to treat the design storm event (Design Capture Volume) described in Section 4.

3. Preliminary WQMP Objectives

Through a combination of Site Design/LID BMPs (where feasible), Source Control, and/or Treatment Control BMPs, project-specific WQMPs shall address all identified pollutants and hydrologic conditions of concern from new development and significant re-development projects for the categories of projects (priority projects) listed in Section 2. Under each type of BMP, listed below, please indicate which BMPs are planned to be implemented and included in the Final WQMP for the project:

A. Site Design/LID (Low Impact Design) for Reducing Stormwater Runoff:

The MS4 Permit requires each priority development project to infiltrate, harvest and use, evapotranspire, or bio-treat the runoff from a 2-yr, 24-hour storm event (Design Capture Volume). If site conditions do not permit infiltration, harvest and use, evapotranspiration, and/or bio-treatment of the entire Design Capture Volume, at the project site, Site Design/LID techniques are required to be implemented to the Maximum Extent Practicable, at the project site, and the remainder of the DCV shall be infiltrated, harvested, bio-treated or treated by alternative measures.

Project applicants shall submit a Preliminary WQMP that documents the LID/Site Design BMPs, proposed for the project. Please indicate, in the table below, which Site Design/LID BMPs will be utilized on this project to accomplish this requirement:

Site Design/LID Practice	Planned	Not Planned
Provide at least the minimum effective area required for LID BMPs, to comply with the WQMP (see Table 3-1 below).		Х
Grade parking lot areas/drive aisles/roof drains to sheet flow runoff into landscaped swales, via curb cuts or zero-face curbs or otherwise disconnect direct drainage from MS4.		Х
Design landscaped areas as swales and grade to accept runoff from building roofs, parking lots and project roadways.		Х
Install surface retention basins or infiltration trenches to receive impervious area runoff.		Х
Install pervious pavement in parking stalls, alleys, driveways, gutters, walkways, trails or patios.		Х
Install underground stormwater retention chambers where downstream landscaped areas are limited.	Х	
Install approved Stormwater Drywells in detention areas.	Х	
Construct streets, sidewalks, and parking lot stalls to the minimum widths necessary.	Х	
Install on-site Biotreatment basins/trenches with underdrains, where soil type is poorly draining.		Х
Install "Engineered Soil" to increase uptake/soil storage capacity and/or evapotranspiration.		Х
Install Rainwater Harvesting/Use Equipment.		Х
Utilize approved off-site retention/infiltration, biotreatment or proprietary treatment, where it is infeasible to install, on-site.		Х

Table 3-1 Minimum Effective Area¹ Required for LID BMPs (surface + subsurface facilities) for Project WQMP to Demonstrate Infeasibility² (% of site)

Project Type	New	Re-
	Development	Development
SF/MF Residential < 7 du/ac	10%	5%
SF/MF Residential < 7 - 18 du/ac	7%	3.5%
SF/MF Residential > 18 du/ac	5%	2.5%

Mixed Use, Commercial/Industrial w/FAR<	10%	5%
Mixed Use, Commercial/Industrial w/FAR	7%	3.5%
Mixed Use, Commercial/Industrial w/FAR> 2.0	5%	2.5%
Podium (parking under > 75% of project)	3%	1.5%
Zoning allowing development to property	2%	1%
lines		
Transit Oriented Development ³	5%	2.5%
Parking	5%	2.5%

¹ "Effective area" is defined as land area which 1) is suitable for a retention/infiltration BMP (based on infeasibility criteria) and 2) is located down-gradient from building roof or paved areas, so that it may receive gravity flow runoff.

² Criteria only required if the project WQMP seeks to demonstrate that the full DCV cannot be feasibly managed on-site.

³ Transit oriented development is defined as a project with development center within one half mile of a mass transit center.

Key: du/ac = dwelling units/acre, FAR = Floor Area Ratio = ratio of gross floor area of building to gross lot area, MF = Multi Family, SF = Single Family

B. Source Control BMPs – The following BMPs are designed to control stormwater pollutants and runoff water at the location where it is generated. Please indicate which of the listed BMPs are planned to be implemented for the project:

Source Control BMPs	Planned	Not Planned
Minimize non-stormwater site runoff through efficient	Х	
irrigation system design and controllers.		
Minimize trash and debris in storm runoff through a	Х	
regular parking lot, storage yard and roadway sweeping		
program.		
Provide proper covers/roofs and secondary containment		Х
for outside material storage & work areas.		
Provide solid roofs over all trash enclosures.	Х	
Site Owner(s)/Property Manager/HOA or POA will be	Х	
familiar with the project WQMP and stormwater BMPs.		
Owner or HOA or POA to provide Education/Training of	Х	
site occupants and employees on stormwater BMPs.		
Install stormwater placards/stenciled messages with a	Х	
"No Dumping" message on all on-site/off-site storm		
drain inlets.		
Provide contained equipment/vehicle wash rack areas		Х
that discharge to sanitary sewer.		

C. Treatment Control BMPs – The following BMPs are designed to control stormwater pollutants where it is not feasible to install on-site Site Design/LID BMPs, with the requisite capacity to treat the Design Capture Volume for identified Pollutants of Concern or where pretreatment of stormwater runoff is required, ahead of infiltration BMPs. Please indicate which of the listed BMPs are planned to be implemented for the project:

Treatment Control BMP	Planned	Not Planned
Gravity Separator devices for pretreatment of sediment,	Х	
trash/litter or Oil & Grease		
Proprietary Biofiltration vaults/devices		Х
Media Cartridge Filtration Vaults		Х
Proprietary Filter Inserts for on-site storm drain inlets or		Х
retention basin/trench overflow drains		
Regional Treatment facilities are installed or are planned		Х
for installation, off-site, and provide a superior level of		
treatment or clear advantage to on-site treatment BMPs		

4. Volume-based calculation (approximate) for sizing on-site or off-site Stormwater Retention/Infiltration, Harvest & Re-Use or Biotreatment facilities

- 1) Calculate the "Watershed Imperviousness Ratio", i, which is equal to the percent of impervious area in the BMP Drainage Area divided by 100.
- 2) Calculate the composite runoff coefficient C_{BMP} for the Drainage Area above using the following equation:

$$C_{BMP} = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$$

where: **C**_{BMP} = composite runoff coefficient; and,

i = watershed imperviousness ratio.

- 3) Determine the area-averaged "6-hour Mean Storm Rainfall", P₆, for the Drainage Area. This is calculated by multiplying the area averaged 2-year 1-hour value (0.55"-0.6") by the appropriate regression coefficient from Table 1 (1.4807). The 2-yr, 1-hr value for southern Ontario is approximately to 0.5" (P₆ = 0.5*1.4807 = 0.74 and northern Ontario is approximately 0.6" in/hr (P₆ = 0.6*1.4807 = 0.89).
- 4) Determine the appropriate drawdown time. Use the regression constant a = 1.582 for 24 hours and a = 1.963 for 48 hours. Note: Regression constants are provided for both 24 hour and 48 hour drawdown times; however, 48 hour drawdown times should be used in most areas of California. Drawdown times in excess of 48 hours should be used with caution as vector breeding can be a problem after water has stood in excess of 72 hours. (Use of the 24 hour drawdown time should be limited to drainage areas with coarse soils (Class 'A' soils, that readily drain.)
- 5) Calculate the "Maximized Detention Volume", P₀, using the following equation:

$\mathbf{P}_0 = \mathbf{a} \cdot \mathbf{C}_{\mathsf{BMP}} \cdot \mathbf{P}_6$

where: P_0 = Maximized Detention Volume, in inches a = 1.582 for 24 hour and a = 1.963 for 48 hour drawdown, C_{BMP} = composite runoff coefficient; and, P_6 = 6-hour Mean Storm Rainfall, in inches

6) Calculate the "Target Capture Volume", V₀, using the following equation:

$V_0 = (P_0 \cdot A) / 12$

where: V₀ = Target Capture Volume, in acre-feet
P₀ = Maximized Detention Volume, in inches; and,
A = BMP Drainage Area, in acres

Project Volume-based calculation (approximate) for planned on-site or off-site Stormwater Retention/Infiltration, Harvest & Re-Use or Biotreatment facilities:

Variable	Factor/Formula	Area A1	Area A2	Area A3	Area A4	Area A5	Area A6	Area A7
		Result						
Ratio of impervious surface/total site surface	(i)	0.90	0.9	0.9	0.90	0.9	0.9	0.9
C _{BMP} = runoff coefficient	$0.858i^{3} - 0.78i^{2} + 0.774i$ +0.04 =	0.73028	0.73028	0.73028	0.73028	0.73028	0.73028	0.73028
P ₆	**P ₆ = 2-yr,1- hr depth*1.4807 =	0.8440	0.8440	0.8440	0.8440	0.8440	0.8440	0.8440
Detention Volume- acre inches	$P_0 = a * C_{BMP} * P_6 =$	1.210	1.210	1.210	1.210	1.210	1.210	1.210
Drawdown rate of basin/trench (a)	1.582 for 24-hr drawdown or 1.963 for 48-hr drawdown =	1.963	1.963	1.963	1.963	1.963	1.963	1.963
Project Total Area (ac)	(A)	4.61	6.51	4.78	7.83	2.71	5.22	2.25
Design Capture Volume, cu. ft. (DCV)	V ₀ = [(P ₀ * A)/12]*43560 =	20,247	28,592	20,994	34,389	11,902	22,926	9,882
Water Volume infiltrated in first 3 hrs of storm	Vol= in/hr/12 x ft ² of infiltration area x 3 hrs	TBD						
Retention/ treatment Volume provided, cu. ft.	Retention capacity of basins, trenches, underground system or biotreatment proposed	20,500	28,600	21,000	34,400	12,000	23,000	9,900

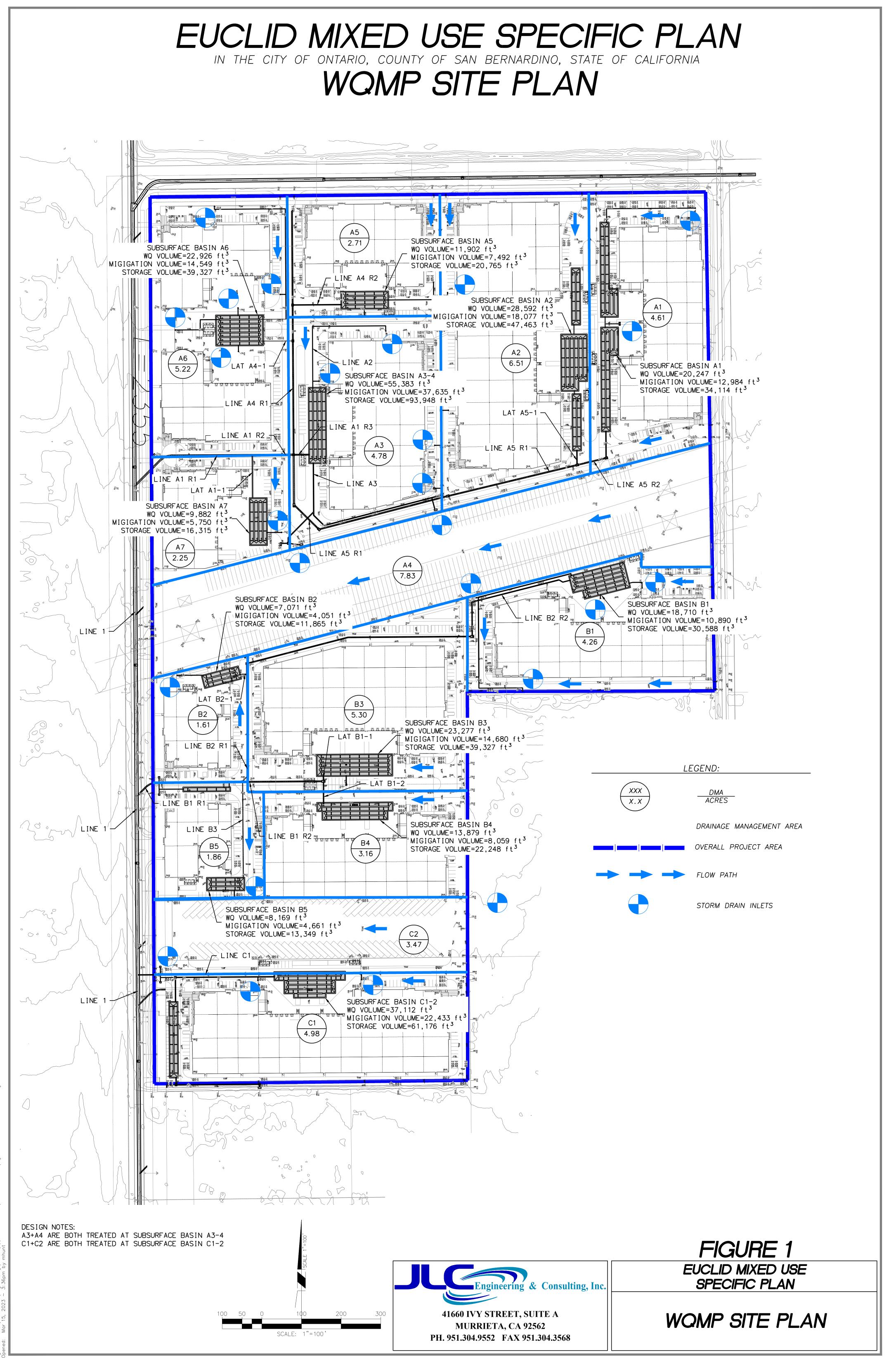
**For P6 value, use site coordinates and NOAA website to determine project's average 2-yr, 1-hr rainfall depth, at: <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>.

Variable	Factor/Formula	Area B1	Area B2	Area B3	Area B4	Area B5	Area C1	Area C2
		Result						
Ratio of impervious surface/total site surface	(i)	0.90	0.9	0.9	0.90	0.9	0.9	0.9
C _{BMP} = runoff coefficient	$0.858i^{3} - 0.78i^{2} + 0.774i$ +0.04 =	0.73028	0.73028	0.73028	0.73028	0.73028	0.73028	0.73028
P ₆	**P ₆ = 2-yr,1- hr depth*1.4807 =	0.8440	0.8440	0.8440	0.8440	0.8440	0.8440	0.8440
Detention Volume- acre inches	$P_0 = a * C_{BMP} * P_6 =$	1.210	1.210	1.210	1.210	1.210	1.210	1.210
Drawdown rate of basin/trench (a)	1.582 for 24-hr drawdown or 1.963 for 48-hr drawdown =	1.963	1.963	1.963	1.963	1.963	1.963	1.963
Project Total Area (ac)	(A)	4.26	1.61	5.30	3.16	1.86	4.98	3.47
Design Capture Volume, cu. ft. (DCV)	V ₀ = [(P ₀ * A)/12]*43560 =	18,710	7,071	23,277	13,879	8,169	21,872	15,240
Water Volume infiltrated in first 3 hrs of storm	Vol= in/hr/12 x ft ² of infiltration area x 3 hrs	TBD						
Retention/ treatment Volume provided, cu. ft.	Retention capacity of basins, trenches, underground system or biotreatment proposed	18,800	7,100	23,300	13,900	8,200	21,900	15,300

**For P6 value, use site coordinates and NOAA website to determine project's average 2-yr, 1-hr rainfall depth, at: <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>.

5. Hydrologic Conditions of Concern (HCOC) and use of the on-line San Bernardino County HCOC Map for determining necessary mitigation steps necessary if there are HCOCs downstream of a project:

Project applicants may access the on-line HCOC Map at:


<u>http://sbcounty.permitrack.com/WAP/</u>. The map will indicate any hydrology concerns with downstream waterways that are hydraulically connected to the project and will indicate if there are any approved regional projects downstream that could be utilized for off-site mitigation of HCOCs. Please indicate here if the project will or will not be able to retain/infilter, harvest and use or biotreat and detain the DCV, on-site, as calculated in Section 4 and if there are HCOCs identified downstream of the project:

Retain or Harvest/Use the DCV on site?	Yes	Χ	No	
Biotreat the DCV but not infilter the runoff?	Yes		No	X
HCOCs identified downstream of site?	Yes		No	X

If the entire DCV will not be retained on site, the DCV is biotreated but not infiltered or additional detention capacity is needed to address identified HCOCs, downstream of the site, please list here, what additional mitigation measures will be utilized (on-site or off-site) to address HCOCs (see Section 4.2.1-4.2.3 of the SB County WQMP Technical Guidance):

6. Site Plan and Conceptual Grading/Drainage Plan requirements for submission with the Preliminary WQMP:

Provide a Site Plan and Conceptual Grading/Drainage Plan along with this Preliminary WQMP, which conceptually shows the proposed locations of buildings, homes, parking lots, parks, new paved roadways, landscaped areas, drainage patterns and drainage sub-areas, methods of conveyance, proposed retention/infiltration, harvest & use or biotreatment facilities that are planned for installation. Where it is determined to be infeasible to capture and detain design storm runoff volumes, on-site, please include other design features, as described in Section 3, above. Include numbered or lettered notes on the Site Plan with a legend detailing other BMPs, as described in Section 3.

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume						
	AREA A1 (DM	A A1)				
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303				
200811.6	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$				
4 Determine 1-hour rainf	all depth for a 2-year return period $P_{2yr-1hr}$ (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>				
5 Compute P ₆ , Mean 6-h	r Preciptiation (inches) 0.	8440				
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item	1 (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)				
6 Drawdown Rate						
	ndition. Selection and use of the 24 hour drawdonw time co					
	ry BMP footprint is a function of drawdown time. While sho					
performance criteria for LID BN	MP design capture volume, the depth of water that can be s	tored is also reduced. 48-hrs 🖂				
7 Compute design captur	re volume, DCV (ft ³) 20,247					
DCV = 1/12 * [Item 1 * Item 3 *	* Item 5 * C2], where C2 is a function of drawdown rate (24	-hr = 1.582; 48-hr =1.963)				
Compute separate DCV for eac	h outlet from the project site per schematic drawdown in F	orm 3-1 Item 2				

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume			
	AREA A2 (DMA	A A2)	
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303	
283575.6	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$	
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>	
5 Compute P ₆ , Mean 6-hr	Preciptiation (inches) 0.8	440	
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item 2	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)	
6 Drawdown Rate			
,	ndition. Selection and use of the 24 hour drawdonw time co		
	y BMP footprint is a function of drawdown time. While shor		
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂		
7 Compute design capture volume, DCV (ft ³) 28,592			
DCV = 1/12 * [Item 1 * Item 3 *	* Item 5 * C2], where C2 is a function of drawdown rate (24-	hr = 1.582; 48-hr =1.963)	
Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA A3 (DMA	A A3)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
208216.8	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$		
4 Determine 1-hour rain	fall depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>		
5 Compute P ₆ , Mean 6-h	r Preciptiation (inches) 0.8	440		
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)		
6 Drawdown Rate				
	ndition. Selection and use of the 24 hour drawdonw time co			
	ry BMP footprint is a function of drawdown time. While shor			
performance criteria for LID B	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂			
7 Compute design captu	7 Compute design capture volume, DCV (ft ³) 20,994			
DCV = 1/12 * [Item 1 * Item 3	* Item 5 * C2], where C2 is a function of drawdown rate (24-	nr = 1.582; 48-hr =1.963)		
Compute separate DCV for eac	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA A4 (DM	A A4)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
341074.8	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$		
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>		
5 Compute P ₆ , Mean 6-h	r Preciptiation (inches) 0	8440		
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item	1 (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)		
6 Drawdown Rate				
	ndition. Selection and use of the 24 hour drawdonw time c			
	ry BMP footprint is a function of drawdown time. While sho			
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂			
7 Compute design captur	7 Compute design capture volume, DCV (ft ³) 34,389			
DCV = 1/12 * [Item 1 * Item 3 *	DCV = 1/12 * [Item 1 * Item 3 * Item 5 * C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr =1.963)			
Compute separate DCV for eac	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA A5 (DMA	A A5)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
118047.6	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$		
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.qov/hdsc/pfds/sa/sca_pfds.html</u>		
5 Compute P ₆ , Mean 6-hr	Preciptiation (inches) 0.8	3440		
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item 1	. (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)		
6 Drawdown Rate				
,	ndition. Selection and use of the 24 hour drawdonw time co			
	y BMP footprint is a function of drawdown time. While shor			
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🗵			
7 Compute design captur	7 Compute design capture volume, DCV (ft ³) 11,902			
DCV = 1/12 * [Item 1 * Item 3 *	DCV = 1/12 * [Item 1 * Item 3 * Item 5 * C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr =1.963)			
Compute separate DCV for each	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA A6 (DMA	A6)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
227383.2	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp$	%)+0.04	
4 Determine 1-hour rai	nfall depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa</u>	/sca_pfds.html	
5 Compute P ₆ , Mean 6-	hr Preciptiation (inches) 0.8	440		
P_6 = Item 4 * C_1 , where C_1	is a function of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.909; Desert = 1.237	71)	
6 Drawdown Rate				
Use 48 hours as the default of	condition. Selection and use of the 24 hour drawdonw time con	dition is subject to approval by the	24-hrs□	
	sary BMP footprint is a function of drawdown time. While short			
performance criteria for LID	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂			
7 Compute design capt	7 Compute design capture volume, DCV (ft ³) 22,926			
DCV = 1/12 * [Item 1 * Item	3 * Item 5 * C2], where C2 is a function of drawdown rate (24-h	r = 1.582; 48-hr =1.963)		
Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2				

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume			
	AREA A7 (DMA	A7)	
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303	
98010	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$	
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.qov/hdsc/pfds/sa/sca_pfds.html</u>	
5 Compute P ₆ , Mean 6-hr	r Preciptiation (inches) 0.84	140	
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)	
6 Drawdown Rate			
,	ndition. Selection and use of the 24 hour drawdonw time con		
	y BMP footprint is a function of drawdown time. While shorte		
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂		
7 Compute design capture volume, DCV (ft ³) 9,882			
DCV = 1/12 * [Item 1 * Item 3 *	* Item 5 * C2], where C2 is a function of drawdown rate (24-h	r = 1.582; 48-hr =1.963)	
Compute separate DCV for eac	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2		

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA B1 (DMA	A B1)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
185565.6	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$		
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>		
5 Compute P ₆ , Mean 6-h	r Preciptiation (inches) 0.8	440		
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)		
6 Drawdown Rate				
	ndition. Selection and use of the 24 hour drawdonw time cor			
	ry BMP footprint is a function of drawdown time. While short			
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂			
7 Compute design captur	7 Compute design capture volume, DCV (ft ³) 18,710			
DCV = 1/12 * [Item 1 * Item 3	DCV = 1/12 * [Item 1 * Item 3 * Item 5 * C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr =1.963)			
Compute separate DCV for eac	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume			
	AREA B2 (DMA	. B2)	
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303	
70131.6	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$	
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>	
5 Compute P ₆ , Mean 6-hr	Preciptiation (inches) 0.8	440	
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)	
6 Drawdown Rate			
	ndition. Selection and use of the 24 hour drawdonw time con		
	y BMP footprint is a function of drawdown time. While short		
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂		
7 Compute design captur	7 Compute design capture volume, DCV (ft ³) 7,071		
DCV = 1/12 * [Item 1 * Item 3 *	DCV = 1/12 * [Item 1 * Item 3 * Item 5 * C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr =1.963)		
Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume			
	AREA B3 (DM	A B3)	
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303	
230868	site design practices (Imp%): 0.9	$R_{c} = 0.858(Imp\%)^{3} - 0.78(Imp\%)^{2} + 0.774(Imp\%) + 0.04$	
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>	
5 Compute P ₆ , Mean 6-hr	Preciptiation (inches) 0.	8440	
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item	1 (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)	
6 Drawdown Rate			
	ndition. Selection and use of the 24 hour drawdonw time co		
	y BMP footprint is a function of drawdown time. While sho		
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂		
7 Compute design captur	7 Compute design capture volume, DCV (ft ³) 23,277		
DCV = 1/12 * [Item 1 * Item 3 *	* Item 5 * C2], where C2 is a function of drawdown rate (24	-hr = 1.582; 48-hr =1.963)	
Compute separate DCV for each	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2		

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA B4 (DMA	A B4)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
137649.6	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$		
4 Determine 1-hour rain	fall depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>		
5 Compute P ₆ , Mean 6-h	r Preciptiation (inches) 0.8	440		
P_6 = Item 4 * C_1 , where C_1 is	s a function of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)		
6 Drawdown Rate				
	ondition. Selection and use of the 24 hour drawdonw time con			
	rry BMP footprint is a function of drawdown time. While short			
performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂				
7 Compute design captu	7 Compute design capture volume, DCV (ft ³) 13,879			
DCV = 1/12 * [Item 1 * Item 3	DCV = 1/12 * [Item 1 * Item 3 * Item 5 * C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr =1.963)			
Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2				

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA B5 (DMA	. B5)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
81021.6	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$		
4 Determine 1-hour rain	fall depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>		
5 Compute P ₆ , Mean 6-h	r Preciptiation (inches) 0.8	440		
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item 1	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)		
6 Drawdown Rate				
,	ndition. Selection and use of the 24 hour drawdonw time con			
	ry BMP footprint is a function of drawdown time. While short			
performance criteria for LID Bl	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🖂			
7 Compute design captu	7 Compute design capture volume, DCV (ft ³) 8,169			
DCV = 1/12 * [Item 1 * Item 3	* Item 5 * C2], where C2 is a function of drawdown rate (24-h	r = 1.582; 48-hr =1.963)		
Compute separate DCV for eac	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume				
	AREA C1 (DM/	A C1)		
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303		
216928.8	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$		
4 Determine 1-hour rainf	all depth for a 2-year return period P _{2yr-1hr} (in):	0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>		
5 Compute P ₆ , Mean 6-hr	Preciptiation (inches) 0.8	3440		
P_6 = Item 4 * C_1 , where C_1 is	a function of site climatic region specified in Form 3-1 Item :	(Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)		
6 Drawdown Rate				
	ndition. Selection and use of the 24 hour drawdonw time co			
	y BMP footprint is a function of drawdown time. While shor			
performance criteria for LID BN	performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced. 48-hrs 🗵			
7 Compute design captur	7 Compute design capture volume, DCV (ft ³) 21,872			
DCV = 1/12 * [Item 1 * Item 3 *	DCV = 1/12 * [Item 1 * Item 3 * Item 5 * C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr =1.963)			
Compute separate DCV for eac	Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			

Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume			
AREA C2 (DMA C2)			
1 Project area DA 1 (ft ²):	2 Impervious area after applying preventative	3 Runoff Coefficient (Rc): 0.7303	
151153.2	site design practices (Imp%): 0.9	$R_c = 0.858(Imp\%)^3 - 0.78(Imp\%)^2 + 0.774(Imp\%) + 0.04$	
4 Determine 1-hour rainfall depth for a 2-year return period P _{2yr-1hr} (in): 0.57 <u>http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</u>			
5 Compute P ₆ , Mean 6-hr Preciptiation (inches) 0.8440			
P ₆ = Item 4 * C ₁ , where C ₁ is a function of site climatic region specified in Form 3-1 Item 1 (Valley = 1.4807; Mountain = 1.909; Desert = 1.2371)			
6 Drawdown Rate			
Use 48 hours as the default condition. Selection and use of the 24 hour drawdonw time condition is subject to approval by the 24-hrs			
local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times reduce the			
performance criteria for LID BN	AP design capture volume, the depth of water that can be s	tored is also reduced. 48-hrs 🗹	
7 Compute design captur	re volume, DCV (ft ³) 15,240		
DCV = 1/12 * [Item 1 * Item 3 * Item 5 * C2], where C2 is a function of drawdown rate (24-hr = 1.582; 48-hr =1.963)			
Compute separate DCV for each outlet from the project site per schematic drawdown in Form 3-1 Item 2			